

Small Satellite Space Traffic Management

Brian Weeden
Technical Advisor
Secure World Foundation

THE SHIFT FROM BIG SATELLITES TO SMALL ONES

Historical satellite size

- Historically, satellites were large and complex machines
 - Primarily for military applications
 - Carried large payloads
 - Optical telescopes
 - Antennas
 - Required large amounts of power
- Large satellites have many disadvantages
 - Expensive to place in orbit
 - Size limited by fairing of launch vehicle
 - Launch or on-orbit failure can mean loss of all capability

The shift to smaller satellites

- Recent advances in technology have made it possible to miniaturize many satellite components, and in turn reduce the size of satellite dramatically
- This is being driven by several important factors
 - Greater interest in space capabilities by emerging/developing countries
 - Growth in civil, scientific, and academic space missions
- This change is also starting to happen with military satellites as well
 - A few, large satellites are very vulnerable to kinetic attacks
 - Shifting towards distributed constellations of many smaller satellites can deter kinetic attacks and increase survivability

RapidEye

THE POTENTIAL RISK POSED BY ULTRA LOW MASS SATELLITES

Classification of satellites by size

Promoting Cooperative Solutions for Space Security

"Ultra Low Mass Satellites"

Class	Weight
"Standard"	> 1000 kg
Mini	100 – 1000 kg
Micro	10 – 100 kg
Nano	1 – 10 kg
Pico	100 g <i>-</i> 1 kg
Femto	< 100 g

Launch history for ULM satellites

Promoting Cooperative Solutions for Space Security

Total on orbit as of 2010: 41

Current locations of ULMs on orbit

Two major problems raised by ULM satellites

- Difficult to track
 - Although some sensors can track objects below 10 cm in LEO, the major tracking networks cannot track objects below 10 cm reliably at this point
- Extreme power/weight constraints that preclude end-of-life de-orbit capability
 - De-orbiting requires fuel or significant electrical power, which many ULMs do not have
 - Not an issue if the ULM satellite is placed in a low orbit with a fairly high rate of natural decay
 - Significant issue if the ULM satellite is placed in Sun-Synchronous Orbit (SSO) or higher

Potential solutions

- Orbit zoning / segregation
 - ULM satellites only allowed in certain regions?
 - "Protected Human zone" below 450 km?
- Mandatory de-orbit at end of mission life (instead of 25 years)
- Voluntary broadcast of positional data
 - Similar to airplane Identification Friend/For (IFF) squawk
- Mandatory tracking enhancement
 - Radar reflectors

Do ULM satellites actually pose a threat?

- Yes, ULM satellites are hard to track and many may not have de-orbit or maneuver capability
- However, they are also smaller in size and lower in mass than traditional satellites
 - Smaller size means the probability of colliding with another object is lower
 - Lower mass means that any collision with an ULM satellite would result in a lot less debris generated.
- ULM satellites might actually have a net positive effect on the debris population growth and collision risk if they are launched instead of large payloads

SWF/BEIHANG/ISU RESEARCH PROJECT

13

- 3-year BUAA research project funded by Secure World Foundation
- Three main focus areas
 - Independent verification of the growth in the debris population and the need for active debris removal
 - Technical research and validation of active debris removal concepts
 - Research into small satellite space traffic management issues and potential techniques
 - Does a shift towards ULM satellites present an increase risk of collision and/or growth in the space debris population?
 - What are some potential mitigation techniques?
 - What are the advantages and disadvantages of these techniques from a technical and economic perspective?

Questions?

Thank you

bweeden@swfound.org