2010 Beijing Orbital Debris Mitigation Workshop

Hypervelocity Impacts

—Tiny debris, Severe damage

Jia Guanghui

School of Astronautics, Beihang University, China

Where is Spacecraft?

How will Spacecraft comeback?

Objects surrounds earth

Do you feel safe to launch Spacecraft?

8:03 AM

Beihang University icture from nasa website

*Supperman,100m race man, ~10m/s

- 9.58 Bolt (Jamaica) 2009-08-17 Berlin
- 9.69 Bolt (Jamaica) 2008-08-16 Beijing
- 9.72 Bolt(Jamaica) 2008-06-01 New york
- 9.74 Bowell(Jamaica) 2007-09-09 Italy
- 9.77 Bowell (Jamaica) 2006-08-18Switzerland
- 9.77 Bowell (Jamaica) 2006-06-11 England

*Car:~340m/s like air wave

- Car in highway: 120km/hour,33.3m/s
- Most fast "Car":

Thrust SSC in England, 1228km/h, 3km/h faster than sound speed, With two Rolls Royce turbofan motor, 18 Litre/s.

- *Aircraft:10000km/hour,2777m/s
- 2009, June, X-43, Nasa, 3.65m, 1.2ton

Hyper Velocity: *Spacecraft,7.8km/s

- Spacecraft,7.8km/s
- Aircraft, 2.777km/s
- Car,0.34km/s,340m/s
- Supperman,10m/s

Hyper Velocity is a absolute concept?

Velocity is enough high, and depends on materials in impact also

*orbital debris

- Orbital debris Speed same as to spacecraft;
- Four source:
- ➤ Launch vehicle;
- ➤ Mission —related;
- Mission-after life of spacecraft;
- Breakup of orbital objects.
- ➤ Attitude lower ,flying faster, earth orbital object speed almost<=7.8km/s.

Hyper Velocity impact material of Orbital Debris:

- Mostly, spacecraft made of AL-Alloy
- Such as 2024 Al, yield stress ~300MPa in static
- Impact Pressure ,~100GPa
- Hypervelocity:Impact Speed is so higher to produce higher pressure than the material yield stress.

Hypervelocity Impact kinetic energy:

~10mm,that is protected by shield

- 10mm Al-sphere (1.48g) $\sqrt{6.5}$ km/s, Ek= $\frac{1}{2}m\sqrt{2}$
- ~10g \ 2.4568km/s
- ~100g \ 0.7769km/s
- ~1000g \ 0.2456km/s,884km/hour
- ~55kg、 0.033km/s, 119km/h (highway)
- ~1500kg、 0.00634km/s,22.837km/h (downtown)

Hypervelocity Impact kinetic energy:

~1mm,that happened to penetrate apacecraft wall

- 1mm Al-sphere(1.4mg) \6.5km/s
- ~10g,77.7m/s,279km/hour
- ~55g,33.1m/s,119km/hour (highway)
- ~100g,24.5m/s,88km/hour
- ~1kg,7.7m/s,27km/hour (downtown)

From nasa web

Hypervelocity Impact roles

- Two objects in orbit
- Small to small, more smaller debris happened
- Small to big, more smaller debris appear inside bigger one, dis-function for big(service spacecraft) (that is concerned by shielding designer)
- Big to big,
 More smaller debris appear some medium debris appear few bigger debris appear

Simulation done...

- Simulation method
- Simple constructer impact
- Some cases...

*Simulation on Experimental Case from reference:

Al Sphere D=9.53mm, V=6.18km/s, Al Plate Thickness=2.2mm

From nasa web

Process of Sphere impact wall...

*Inner damage by Debris cloud behind wall

Case: D 9. 53mm, V 6. 18km/s, t 2. 2mm al wall

8:03 AM

Result: distance 45cm, 1mm al plate; 35cm, 2mm; 20cm, 4mm.

- Near bigger hole, far small hole?
- Thin plat against bigger ball, hole bigger in second plate(Wall)!

*1mm,5km/s,w/o rotating of ball

• d=1mm,10mmx10mmx1mm,h=0.01, SPH,100552.plate-100000,ball-552个。

*4mm to 0.2mmAL+kev-epoxy

*bolt impact at 4km/s

*Shape

cylinder debris

From

1: 2

to

4: 1

Work underway

- Improve simulation ability about hypervelocity impact;
- Develop more effective method to face more reality

work 1

by Zh.XT

by Zh.XT

8:03 AM Beihang University

Summary or Some ideas

- Hypervelocity Impact almost only exists in earth orbit?!
- Impacting event via different mirrors, Experiment and simulation, which one is best choice?!
- Simulation method could give reasonable explain to the experimental phenomena;
- Exact simulation method could give data as experiment;
- Geometry model of Simulation is relative easy;
- Material model of hypervelocity impact is relative difficult.

Future work

- Get statistic data about different size of debris via hypervelocity impact simulation.
- Find the way to design the spacecraft to avoid lots debris appear in accident impact by big trunk.

Advice to improve Thank you

Jiaguanghui@Buaa.edu.cn