Orbital debris removal by the active maneuvering spacecraft with tether net/gripper

BIN SONG

Aerospace System Engineering Shanghai, Shanghai Academy of Spaceflight Technology October 19,2010

Outline

- > Introduction
- >Status of Home and Abroad
- >Study Contents
- **➤**Current Status
- ➤ Next Steps
- **≻**Conclusions

Introduction

Background and Requirement

- **Increase in number.** Orbital debris will become a serious problem for low Earth orbit(LEO) and for the geosynchronous orbit(GEO).
 - Defunct satellites(either complete propellant reserve or fail)
 - Launch vehicle upper stages
 - Could not be re-orbited

• Dangerous:

- Pose a serious collision risk
- Generate a number of smaller bits of debris between large Orbit debris

Need for mitigation:

- Effective measures
- Reasonable measures

Introduction

>Objective

- Active removal of large orbit debris (LEO,GEO):
 - Avoid the excessive growth of orbit debris
 - One of most practical strategies
- Active maneuvering spacecraft:
 - Rendezvous and capture an inert, tumbling and non-cooperative target
 - Tow it to a graveyard orbit
 - Possess orbital maneuvering capability
 - Bus design
 - Payloads: tether net/gripper systems

>ESA:ROGER

- Robotic Geostationary orbit Restorer:
 - Arroach and capture defunct satellites in GEO
 - Transfer it to a graveyard orbit
- ROGER study(payload):
 - Tether -net system
 - Tether -gripper system

>ESA:ROGER

Tether -net system

Tether -gripper system

>TECSAS

- TEChnology Satellite for demonstration and verification of a Servicing System
 - German Space Organization (DLR)
 - Canadian Space Agency (CSA)
 - Russian Mission Control Center(MCC)
- Main objective:
 - Unmanned on-orbit assembly
 - Unmanned on-orbit servicing

>TECSAS

• Demonstrate:

- Far rendezvous
- Close approach
- Inspection fly around
- Capture of a non-cooperative and cooperative client
- Stabilization and identification of the behavior of the coupled satellites
- Flight maneuvers
- Manipulation on the captured client
- Attitude changes by manipulator motions
- Decoupling of service and client satellites
- Formation flight

>Japan:Space debris removal system

Mission

- Rendezvous with a target
- Fly around it for inspection
- Transfer the target to a disposal orbit

Key technologies:

- Cost-effective orbit transfer (electrodynamics tether)
- Rendezvous
- Angular momentum dissipation
- Robot operation

>Trend (Large orbit debris)

Active removal

- Active maneuvering spacecraft
- Possible measure

• Key technologies:

- Orbit rendezvous
- Close approach and Station keeping
- Capture
- Transfer

• Payloads:

- Tether net system
- Tether gripper system
- Robotic arm

Study contents

- ➤ General system argumentation
 - Concepts design and technical index
 - Spacecraft bus design
 - Based on a new design, payload accommodation
 - Payloads:
 - Tether net system
 - Tether gripper system
- Key component technologies
 - Exploration and identification of large orbit debris:
 - Radar sensors
 - Vision sensors(optical and infrared sensors)
 - Orbital rendezvous of large orbit debris:
 - Long-range(absolute navigation)
 - Short-range(relative navigation)

Study contents

Close approach and station keeping of large orbit debris:

- A very close distance (within the reach of tether net/gripper)
- Strictly control to avoid collision
- Satisfy the requirements of releasing attitude

Capture operation of large orbit debris:

- Tumbling and non-cooperative target ,capture device
- Attitude stabilization

Orbit transfer of large orbit debris:

- Transfer to a disposal orbit
- Short tether
- Pose a serious collision risk
- To avoid collision
- To tow the target, adjust the control system

Study contents

- > Simulation
 - Numerical Simulation:
 - Verify key technologies
 - Evaluate the controller's performance
 - Hard in the loop Simulation:
 - Exercise hardware-software interfaces
 - Assess the efficacy of algorithms
 - Expose algorithm to hardware error characteristics
- > Experimental verification
 - Capture operation experiment
 - Payload releasing experiment

Current Status

The major assumptions and requirements are as follows:

- Removal targets: large orbit debris
- Types of debris orbit: GEO, LEO
- Graveyard orbit: IADC guidelines
- Mass of targets: 1000kg~3000kg
- Number of targets: approximately 5
- Payloads: tether net/gripper systems

• Current work:

- General system argumentation
- Key technology

Next Steps

• Numerical Simulation:

- Software design
- Software test

• Hard in the loop Simulation:

- Navigation devices
- Payloads

Conclusions

Main missions

- Active maneuvering spacecraft with tether net/gripper system
- Controlling the threat from large orbit debris

Review

Related studies

Discuss

Study contents, Key technologies, Next steps

Development issues

- Payload design
- GNC during rendezvous, capture and towing phase

