SmallSat 2020 4 August 2020

SpWx at Spire

SmallSat side meeting: Space Weather and Small Satellites: How the Sun Impacts LEO

Matthew Angling
matthew.angling@spire.com

Spire Global UK Ltd., UK

Who & What Is Spire?

- We design, build, launch, and operate one of the largest constellations of satellites
- Perform observations where the number of sensors matters rather than the size.
- Make everything reprogrammable for on-orbit upgrades.
- It's a Spire product from start to finish (except for the rocket)
 - This allows us to innovate quickly

Who & What Is Spire?

- 3U CubeSats (10x10x30 cm)
- 100+ satellites launched
- 80+ satellites in orbit
- 2 3 year design lifespan
- 20+ launch campaigns with seven different launch providers
- 30+ globally distributed ground stations
- Complete global coverage in multiple orbit inclinations
 - 400-600 km altitude

Who & What Is Spire?

- Focus on signals of opportunity
- Software defined radio payloads
 - a. GNSS
 - i. Radio Occultation (RO)
 - ii. Ionosphere (TEC, electron density)
 - iii. Surface reflections (GNSS-R)
 - b. AIS (ship tracking)
 - c. ADS-B (aircraft tracking)
- Hosted payloads / Orbital Services

Challenges and Opportunities

- Ionospheric effects
 - Radio propagation
- Thermospheric drag
- Radiation effects

Ionospheric effects - Challenge

- Ionospheric scintillation can impair the operation of transionospheric radio systems
- Potential for ionospheric impact on V/UHF comms from equatorial ground stations
 - Not observed
- Transitioning to higher frequencies for increased bandwidth will lower impact

Week 2096 SoW 477923.883220 = 2020-03-13T12:45:05.88Z Week 2096 SoW 478450.886728 = 2020-03-13T12:53:52.88Z (Duration = 527.0 sec)

Ionospheric effects - Opportunity

- Each Spire satellite carries a dual frequency GNSS receiver
- Direct observations of ionospheric scintillation
- High resolution perturbation detection in the lower ionosphere
- Global, timely specification of the ionospheric electron density

Week 2096 SoW 477923.883220 = 2020-03-13T12:45:05.88Z Week 2096 SoW 478450.886728 = 2020-03-13T12:53:52.88Z (Duration = 527.0 sec)

lonospheric effects - Opportunity

 Each Spire satellite carries a dual frequency GNSS receiver

 Direct observations of ionospheric scintillation

High resolution perturbation-27
detection in the lower
ionosphere

 Global, timely specification of the ionospheric electron density

Ionospheric effects - O

- Each Spire satellite carries a dual frequency GNSS receiver
- Direct observations of ionospheric scintillation
- High resolution perturbation detection in the lower ionosphere
- Global, timely specification of the ionospheric electron density

Thermospheric drag - Challenge

- Low orbit and low mass mean that the satellites are affected by drag
- Required to meet UN de-orbiting requirements

Thermospheric drag - Opportunity

- Can also sense thermospheric density using precise orbit data
- Potential for near real time thermospheric characterisation
- Preliminary work
 - Integrated density direct from orbital decay
 - Vallado, D. A. (2001)
- Monte Carlo estimation of model parameters
 - Simple exponential
 - MSIS

Radiation/charging

- Short design life removes issues of solar panel degradation
- Low orbit results in relatively benign environment
- Some redundancy on each satellite
- Mainly redundancy across the constellation

By JHUAPL, NASA, recoloured by cmglee http://www.nasa.gov/content/goddard/van-allen-probes-reveal-zebrastripes-in-space, Public Domain, https://commons.wikimedia.org/w/index.php?curid=37587765

Conclusions

- Challenges and opportunities from a range of SpWx effects
- More opportunity than challenge
 - Due to the design philosophy of the Spire constellation
- Potential for wide area ionosphere and thermosphere characterisation
 - Support to operational systems
 - Increase forecasting capabilities

Matthew Angling matthew.angling@spire.com