The Ionospheric Challenge to Flight Safety, and the International Solution

18 May, 2017

Bob Jackson

Lockheed Martin Space Systems Company

Commercial aircraft are 5 times more likely to have an accident flying a non-precision approach than flying a precision approach.

SBAS System Overview

GNSS satellites broadcast ranging signals to airborne receivers and SBAS reference stations.

Reference stations pass data to master stations, which:

- Compute ranging corrections
- Calculate 10⁻⁷ integrity values

for two main sources of errors

- Satellite clock and orbit errors
- Ionosphere induced distortions

SBAS messages are sent to uplinks

SBAS messages are broadcast to hosted GEO payload

SBAS messages are re-broadcast to airborne receivers, which:

- Correct for error positions
- · Calculate integrity protection bound

Entire sequence must be completed in 6 seconds to support precision approach.

International Civil Aviation Organization

ICAO ASSEMBLY RESOLUTION

- Resolution A36 23
 - − All approaches APV by 2016 ← Goal set in 2007
 - · Unachievable!!

- Resolution 37 / 11
 - All approaches APV by 2016
 - However, if unable then straight in approaches (with limits!) ← Goal posts moved in 2011

safe skies for all
civil aviation safety authority

safe skies for all

Ian Mallett

The Ionospheric Challenge

Ionosphere and GNSS errors

- Electron density affects signal transmission time
- Total Electron Count varies with time and location
- Solar storms can cause sudden and extreme variations
- Equatorial region is particularly affected by ionospheric changes and scintillation.

1st Generation SBAS solution

- Map of ionosphere is constructed and transmitted to user
- Vertical delay values are transmitted to user receiver
- User receiver calculates slant delays based on its location within map of vertical delays.
- Works well in mid-latitudes; very challenging in equatorial regions.

SBAS LPV Coverage

A Better Option—Fully Exploit Dual-Frequencies, Multiple Constellations

L1/E1 and L5/E5a frequencies on GPS IIF, Galileo, GPS III

- 2nd frequency in protected band
- User receiver makes ionospheric corrections
- Simplifies SBAS architecture
- Solves equatorial challenge

Galileo

GPS III

Multiple Constellations

- More ranging signals in view
- Redundancy of GNSS providers
- Addresses sovereignty concerns

2nd Generation SBAS Testbed

International Collaboration

- Galileo and GPS IIF: Open service signals on 1575.42 MHz and 1176.45 MHz
- **GMV:** Master station and control console
- Lockheed Martin: Uplink station and signal generator at Uralla, Australia
- Inmarsat: I-4F1, on orbit at 143.5° East
- Geoscience Australia and Land Information New Zealand:
 - Existing geodetic reference stations (CORS)
 - Coordinate with other countries for stable access to dispersed CORS data
 - Intra-systems communication links
- Testbed architecture will use existing assets to maximum extent possible
- Testbed system configuration will anticipate operational system topology

- Reference Station
- Master Station
- ★ Control Centre
- Uplink Stations (Sites are notional)

2nd Generation SBAS Advantages

Improved performance

- Equatorial ionospheric challenge solved by user-receiver corrections
- Global monitoring of GNSS satellites
- Lower cost
- Same architecture supports:
 - Civil aviation
 - Emerging Safety Critical Users
 - Positive Train Control
 - Intelligent Transportation Systems
 - Maritime Navigation
 - Unmanned Aerial Vehicles
 - Automated mining

Technical approach has been validated in simulation; next step is to demonstrate with a signal-in-space testbed.

Cumulative Availability (GPS-GLO-SBAS)

