

ISU Summer Session 2009

Environmental Challenges To Space Security (Space Debris and Space Weather)

Ruediger.Jehn@esa.int

Space Debris Office European Space Operations Centre, Darmstadt, Germany

Approx. 4,600 launches led to about 34,000 catalogued objects

Catalogued Objects in Orbit as of June 2009

Sources of Space Debris

Environmental Challenges To Space Security

200 explosions in space

Known Collisions in Space

- December 1991: Kosmos 1934 is hit by a fragment of Kosmos 926 (both Russia)
- July 1996: Cerise (French military satellite) is hit by a fragment of an Ariane 1 rocket (exploded in 1986)
- January 2005: old US rocket is hit by a fragment of a Chinese rocket (exploded in 2000)
- 10 February 2009: Iridium 33 and Kosmos 2251 crash into each other. 1300 fragments at 800 km altitude

Environmental Challenges To Space Security

Mean time between debris impacts for A=100m ²					
altitude	0.1mm	1mm	1cm	10cm	
400km	4.5d	3.9y	1,214y	16,392y	
800km	2.3d	1.0y	245y	1,775y	
1,500km	0.9d	1.5y	534y	3,190y	
GTO	16.8d	17.7y	7,650y	96,591y	
GEO	78.1d	264y	154,006y	414,749y	

Protection against debris

12 mm aluminium sphere into aluminium block (v=6.8 km/s) 9

The Space Debris Problem

Counter Measures (Mitigation)

The Space Debris Problem

Passivation

Re-orbiting of Geostationary Satellites

$$\Delta v = \frac{\mu}{2va^2} \Delta a$$

a=42,164 km, v=3.073 km/s For Δa=100km: Δv=3.64 m/s

The re-orbit Δv equals approximately the Δv needed for 1 month of station keeping per 100km separation from the GEO ring. The minimum altitude increase is 300km.

Long-term Effectiveness of Mitigation Measures

- **Mitigation Options Category III:** require new developments and, in general, suitability of the method (technical feasibility, cost-efficiency) must be demonstrated.
- 1. Removal with an orbiting manoeuvering vehicle
- 2. Removal of objects with drag devices
- 3. Removal with a tether satellite
- 4. Destruction by laser
- 5. Debris catchers/sweeper

International Cooperation

Inter-Agency Space Debris Coordination Committee (IADC)

Members are ESA, ASI, BNSC, CNES, CNSA (China), DLR, ISRO (India), Japan, NASA, NSAU (Ukraine), and Rosaviakosmos (Russia)

Purpose:

- to exchange information on space debris research activities
- to review progress on cooperative activities
- to facilitate opportunities for cooperation in debris research
- to identify and evaluate mitigation options

Space Weather

Environment	Effects	Anomalies / degradation
Solar particle events, solar wind,	Charging, dose, single event effects,	Single and multiple event upsets,
magnetic fields, trapped belts,	displacement, phase delay,	component failure, solar array
ionospheric electrons	scintillation	degradation, RF link margin

Space Weather

	Instrument			
Measurement	SOHO	GOES	ACE	
Solar wind speed and density	CELIAS (frequency?)		SWEPAM	
	SWAN (frequency?)			
IMF (B field)			MAG	
Solar EUV / Xray images	SUMER, EIT			
Solar coronagraph image	LASCO, UVCS			
X-ray flux		XRS		
UV flux	CELIAS, EIT	(in future s/c)		
> 10Mev ions		EPS	CRIS, SIS	
Interplanetary radio bursts				
Cold ions, total density only				
> 100Mev ions		EPS		
1-100kev electrons (good spectral information)				
Relativistic electrons (>0.3MeV) including spectra		EPS		

Immediate gaps		
Solar wind speed	non full time instrument on SOHO	
GEO low energy particles	No known <u>operational</u> sensors	
MEO low and high energy particles	No operational sensors (GIOVE aimed at modelling and mapping, GPS <u>operational data not released externally</u>)	
Additional gaps after the SOHO mission		
Solar EUV / Xray images		
Solar coronagraph image		
UV flux		
Additional areas of dependence on non-European data		
Solar wind density	non full time instrument on SOHO	
Interplanetary magnetic field	non full time instrument on SOHO	
X-ray flux	Dependent on GOES	
GEO high energy particles	(electrons and ions) Dependent on GOES	