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Example Roles in SSA

* Operators — Maintain and advance the state of practice
* Industry —Transition state of the art into practice

« Academia — Advance the state of the art

- Academics must actively promote advancements to operators
and industry to remain relevant!

- Academia is better suited to the exchange of new ideas and
impartial comparison between algorithms and methods
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Role of Academia in SSA

« Advance understanding and state of the art
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Role of Academia in SSA

« SSA estimation problems are fundamentally nonlinear.

« Academia has led the advancement of Bayesian inference for
nonlinear systems
« Description on figure from previous slide:
- Left Figure — A prior distribution for a 2-D estimated state vector

- Middle Figure - A single measurement of distance from the origin
(Gaussian noise/error)

- Right Figure — Posterior distribution given prior and measurement

* |n this scenario, classical methods such as the Kalman filter,
extended Kalman filter, and the unscented Kalman filter fail.
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Role of Academia in SSA
« Consider high-risk, high-reward ideas for SSA
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Role of Academia in SSA

Accuracy of propagators in SSA classically limited by
computation resources

Computational expense of gravity model limits accuracy for
propagation of low-Earth objects.

Jacobian also relies on gravity model

Research in leveraging modern computers makes gravity model
runtimes constant with an increase in memory requirements

Gravity model runtimes can be greatly reduced.
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Role of Academia in SSA

* Question assumptions that are considered fact

TLEs classically considered
incompatible with special
perturbation methods.

Advancements in “hard”
and “soft” information fusion
demonstrate otherwise
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Role of Academia in SSA

Combining Two-Line Elements (TLEs) and special perturbations methods of
orbit determination/propagation have traditionally been infeasible
Combining methods of “hard measurements” (quantifiable measurements with
known uncertainty) with “soft measurements” (not quantifiable or measurements
with unknown uncertainty) enable improved estimation performance
New methods of hard/soft information fusion allow for maximizing information
gained from data
Image description:

- Blue vertical bars are times where a new TLE is available

- Vertical orange bars are time with a new range measurement

- Including the TLE as soft information improves accuracy until a sufficient number of
hard measurements are available.
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Role of Academia in SSA

* Train the future researchers and operators in SSA

Image: US. Air Force Image; ESA Image: DARPA
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SSA - A Multi-disciplinary Problem

* Applied Mathematics

* Astronautics

* Astronomy

« Computer Science

* Engineering Mechanics
* Information Fusion

Material Science
Psychology
Policy

Remote Sensing
Space Weather
Others...
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Space Object Interaction with Environment
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Space Environment

« To maintain SSA, must understand the spacecraft’s interaction with its environment

You must measure it to know it; you must predict it to understand it. - Moriba Jah, UT-Austin

« Conservative forces
- Gravity (Earth and other bodies)
- Aspherical gravity and its temporal variations
- Relativistic forces

* Non-Conservative forces

- Solar radiation pressure
- Earth radiation pressure
Thermal radiation
Maneuvers
Electrostatic charging
Outgassing
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Knowledge of Orbit State

« Orbit state and uncertainty propagation
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Knowledge of Orbit State

« Knowledge of orbit state is a function of many elements
- Knowledge of the spacecraft
- Knowledge of the environment
-  System requirements
- Computational resources

« How do we translate knowledge of a spacecraft into predicted knowledge of the
state?
- Sensitive to what is known about the spacecraft
- How do we accurately account for systematic and random errors?
- How do we represent such uncertainties?
- How do we do it tractably?
- What are the impacts of truncating information?
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Conjunction Assessment
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Conjunction Assessment

« The commonly used metric for collision risk is the probability of collision - P,
» This value is fundamentally flawed, but it is the best that we currently have.
 For example: Using measurements with more noise yields a smaller probability
of collision.
- The larger data noise produces a larger posterior density, which becomes larger after
propagation.
- Hence, the probability that a spacecraft is in a given region of space is reduced.
- This reduces the probability of collision with another object!

- This is a fundamental flaw because it should give us less confidence in our knowledge
of if there is a collision

« What improvements can be made to assess risk to spacecraft?
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Conjunction Assessment
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Conjunction Assessment

* We have two kinds of uncertainty:
- Systematic (lack of knowledge)
- Random (irreducible)

* How do we accurately reflect systematic uncertainty in the conjunction
assessment process?

 How do we provide operators with the data necessary to assess risk?

* Image description:

- The charts on the previous slide depict results from a new method of risk assessment
that takes systematic uncertainty into consideration

- This produces upper and lower bounds on P,

- With this approach, the separation between the bounds increases with reduced
measurement quality, thereby reflecting systematic error
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Information Fusion

 How do we transform measurements into knowledge?
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Information Fusion

« How do we go from measurements to knowledge of a space
object?
- In general, data association is non-trivial

— Optical images provide limited information on location and
brightness

- Brightness provides some data on angular rates, but is ambiguous

- Spectroscopy can provide information on materials, but is
sensitive to observing conditions

 We need new measurement types and improved algorithms for
information extraction that help identify spacecraft!
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Tracking Dim Objects

Movie: Courtesy of Shahzad Virani and Marcus Holzinger, Georgia Tech

How do we track small
(i.e., dim) objects with
low signal-to-noise?

How do we handle the
joint detection and
tracking problem?
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Influence of New Space on SSA
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Influence of New Space

« Many advancements will be driven by the New Space industry
- Getting into space is increasingly inexpensive
- Vehicle launches are getting cheaper
- Kilo-constellations (1,000s of spacecraft)
- Proliferation of cube-/small-sats
« This yields a discrete jump in the number of trackable space objects
- How do we adjust to such changes in the near future?
- What are the operational impacts?
- What are the recommended practices for new space operators?
- What level of cooperation is require to be successful?

« What are the impacts to existing practices and methods?
- Example: Common P, = 10 no longer a feasible risk threshold!
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Resource Utilization
e How do we use sensor resources for SSA?
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Resource Utilization

« Data is becoming increasingly common
— Multiple universities produce SSA data
— Multiple companies produce volumes of SSA data

« With so much data, what is its utility?
-  How much data is sufficient?
-  How much should data cost?

« What modes of operation are appropriate?
- Custody maintenance versus precise orbit determination
- Searching versus tracking of space objects
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ASTRIAGraph: Knowledge Graph for Space Domain Awareness
ASTRIAGraph



http://astria.tacc.utexas.edu/AstriaGraph
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» Extensive
computational
modeling

Existing HPC
visualization

» Haptic Interfaces
» Networked together

——

Advanced degrees
Certifications
« Apprenticeships

Visiting scholars
program

Unrivaled environment for
workforce development

http://sites.utexas.edu/bajones

A Tried and
Trusted
Research

Institution

Delivering Future
Capability

http://sites.utexas.edu/moriba

UT’s has, and creates, SSA
expertise and infrastructure

Robust, extensible,
modular, secure
cyberinfrastructure

Dynamic interaction
with information sources

Delivering actionable
data products

Interdisciplinary
research

World-class spaceflight
expertise

Astrodynamics

Algorithm design and
V&V

http://sites.utexas.edu/russell
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