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Example Roles in SSA
• Operators – Maintain and advance the state of practice

• Industry –Transition state of the art into practice

• Academia – Advance the state of the art
- Academics must actively promote advancements to operators 

and industry to remain relevant!
- Academia is better suited to the exchange of new ideas and 

impartial comparison between algorithms and methods



Role of Academia in SSA
• Advance understanding and state of the art

Image:  Tuggle and Zanetti, 2018
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Role of Academia in SSA
• SSA estimation problems are fundamentally nonlinear.
• Academia has led the advancement of Bayesian inference for 

nonlinear systems
• Description on figure from previous slide:

- Left Figure – A prior distribution for a 2-D estimated state vector
- Middle Figure - A single measurement of distance from the origin 

(Gaussian noise/error)
- Right Figure – Posterior distribution given prior and measurement

• In this scenario, classical methods such as the Kalman filter, 
extended Kalman filter, and the unscented Kalman filter fail.



• Consider high-risk, high-reward ideas for SSA
Role of Academia in SSA

The spherical harmonic gravity model 
dominates force model execution time

Results courtesy of Steve Casali of Omitron, Inc.

Percentage of Total Force Model Execution Time
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This research considers the cubed-sphere 
gravity model for evaluation time reduction

Originally proposed by Beylkin and Cramer in 2002 

Currently derived from a given base model

Cubed SphereCurrent Model
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Role of Academia in SSA
• Accuracy of propagators in SSA classically limited by 

computation resources
• Computational expense of gravity model limits accuracy for 

propagation of low-Earth objects.
• Jacobian also relies on gravity model
• Research in leveraging modern computers makes gravity model 

runtimes constant with an increase in memory requirements
• Gravity model runtimes can be greatly reduced.



Role of Academia in SSA
• Question assumptions that are considered fact

5.2. Filter implementation

The object state space X ! R6 describes the RSO’s posi-
tion and velocity coordinates in the reference ECI frame.
The time flow of the filtering scenario is built as follows:
the filtering period is split in even time lapses of 120 s, to
which the five collection dates of TLEs are added. The
resulting time flow is indexed with k 2 N with k ¼ 0 corre-
sponding to the scenario’s initial date. In addition, the
duration since epoch J2000 (in s) is given at time k by tk.

5.2.1. Time prediction step
Since the law pk on X describing the RSO’s state is not

parameterizable in a straightforward manner, the practical
implementation of the Bayesian filtering equations follows
a Sequential Monte Carlo (SMC) approach. At time k # 1,
the posterior PDF pk#1 is approximated by a set of N ¼ 500

weighted particles fwðiÞ
k#1; x

ðiÞ
k#1g

N

i¼1 such that

pk#1ð&Þ ’
XN

i¼1

wðiÞ
k#1dxðiÞk#1

ð&Þ;

where dx is the Dirac function at x 2 X, and with
PN

i¼1w
ðiÞ
k#1 ¼ 1.

The prediction kernel mk in Eq. (13) aims at describing a
Low-Earth Orbit (LEO) trajectory between epochs tk#1 and
tk, and is constructed as follows. Assuming the object has
state x ¼ pðtÞ; vðtÞ½ ( at some epoch t, one component of
the acceleration vector _vðtÞ is given by

amod:ðpðtÞ; vðtÞ; tÞ;

where the mapping amod: computes the orbital acceleration
terms modeled in the scope of this paper. In addition to the
central term of Earth’s gravitational pull, it includes the
following perturbations: the zonal/tesseral effects up to
order and degree 20, the gravitational pull of the Sun
and the Moon, the solar radiation pressure (assuming an

Area-to-Mass Ratio (AMR) of 0:0015 m2kg#1, and a
spherical shape with a radiation pressure coefficient of
0.3), and a drag term based on the MSIS86 atmospheric
model (assuming a ballistic coefficient of 25 kg m#2). An
additional acceleration term, accounting for the non-
modeled perturbations, is built as

a!ðpðtÞ; vðtÞ; t;xðtk#1ÞÞ ¼ f eci
ricðp;vÞ ðt # tk#1Þxðtk#1Þð Þ;

where x is a zero-mean Gaussian noise with standard devi-
ation rr ¼ ri ¼ rc ¼ 10#5 ms#3 on each component in the
object’s Radial-Intrack-Crosstrack (RIC) frame, and

f eci
ricðp;vÞ is the mapping that transforms a vector in the

object’s RIC frame to the reference ECI frame. Denoting
by

aorb: pðtÞ; vðtÞ; t;xðtk#1Þð Þ
¼ amod: pðtÞ; vðtÞ; tÞ þ a!ðpðtÞ; vðtÞ; t;xðtk#1Þð Þ

the total acceleration term describing the orbital
dynamics, the time-derivative _x of the target state is then
given by

½ _pðtÞ; _vðtÞ( ¼ vðtÞ; aorb: pðtÞ; vðtÞ; t;xðtk#1Þð Þ½ (:

Given a particle xðiÞk#1 ¼ ½pðiÞðtk#1Þ; vðiÞðtk#1Þ(, the predicted

particle xðiÞkjk#1 is then computed through

xðiÞkjk#1 ¼ ½pðiÞðtk#1Þ; vðiÞðtk#1Þ(

þ
Z tk

tk#1

vðiÞðtÞ; aorb: pðiÞðtÞ; vðiÞðtÞ; t;xðiÞðtk#1Þ
! "# $

dt:

ð21Þ

Since the stochastic component xðiÞðtk#1Þ is constant
throughout the time interval ½tk#1; tk(, Eq. (21) can be solved
with a usual numerical integrator (we used Matlab!’s
ode45).

5.2.2. Data update step
At time k # 1, the predicted PDF pkjk#1 is thus approxi-

mated by the set fwðiÞ
k#1; x

ðiÞ
kjk#1g

N

i¼1
. Three cases are now to be

considered, depending on the availability of corrective
data:

5.2.2.1. Case 1. No observation is available. This is by far
the most frequent case, and also the most straightforward
to process. Since no additional information is available
on the RSO the prior pk is set as the posterior pkjk#1, i.e.

xðiÞk ¼ xðiÞkjk#1; wðiÞ
k ¼ wðiÞ

k#1;

for any 1 6 i 6 N .

Fig. 8. Distance between the MAP estimate of the filter’s output and the
ground truth. The blue (resp. red) vertical bars correspond to the periods
where TLEs (resp. radar observations) are available. The orange (resp.
blue) plot corresponds to the filter using the radar only (resp. using the
radar and the USSTRATCOM’s catalog). The time steps are set every 120 s,
augmented with the collection dates of the five TLEs. (For interpretation
of the references to color in this figure legend, the reader is referred to the
web version of this article.)

1808 E. Delande et al. / Advances in Space Research 62 (2018) 1800–1812

Image:  Delande, et al., 2018

TLEs classically considered 
incompatible with special 
perturbation methods.

Advancements in “hard” 
and “soft” information fusion 
demonstrate otherwise

TLE measurement

Radar measurement



Role of Academia in SSA
• Combining Two-Line Elements (TLEs) and special perturbations methods of 

orbit determination/propagation have traditionally been infeasible

• Combining methods of “hard measurements” (quantifiable measurements with 
known uncertainty) with “soft measurements” (not quantifiable or measurements 
with unknown uncertainty) enable improved estimation performance

• New methods of hard/soft information fusion allow for maximizing information 
gained from data

• Image description:
- Blue vertical bars are times where a new TLE is available
- Vertical orange bars are time with a new range measurement

- Including the TLE as soft information improves accuracy until a sufficient number of 
hard measurements are available. 



Role of Academia in SSA
• Train the future researchers and operators in SSA

Image: US. Air Force Image: ESA Image: DARPA



• Applied Mathematics
• Astronautics
• Astronomy
• Computer Science
• Engineering Mechanics
• Information Fusion

• Material Science
• Psychology
• Policy
• Remote Sensing
• Space Weather
• Others…

SSA – A Multi-disciplinary Problem



Space Object Interaction with Environment
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Space Environment
• To maintain SSA, must understand the spacecraft’s interaction with its environment

You must measure it to know it; you must predict it to understand it.   - Moriba Jah, UT-Austin

• Conservative forces
- Gravity (Earth and other bodies)
- Aspherical gravity and its temporal variations
- Relativistic forces

• Non-Conservative forces
- Solar radiation pressure
- Earth radiation pressure
- Thermal radiation
- Maneuvers
- Electrostatic charging
- Outgassing



Knowledge of Orbit State
• Orbit state and uncertainty propagation

Motivation for Multi-Fidelity Methods

Applying full-fidelity physics for propagation of all space objects is unnecessary.

Propagation
Models

Object
Knowledge

System
Requirements

Space
Environment

Work to date focuses on representation of PDF

Gaussian mixtures

[Horwood et al. (2011); DeMars et al. (2013)]

Monte Carlo and particle methods

[Sabol et al. (2011); Mashiku et al. (2012)]

Polynomial chaos [Jones et al. (2013); Jones and Doostan

(2013); Jones et al (2015)]

Separated representations [Balducci et al. (2013, 2017)]

Di↵erential algebra [Armellin et al. (2011)]

State transition tensors [Park and Scheeres (2006); Fujimoto

et al. (2012)]

Many others...

Brandon A. Jones Multi-Fidelity Methods for Orbit Determination AMOS 2018 2 / 14



Knowledge of Orbit State
• Knowledge of orbit state is a function of many elements

- Knowledge of the spacecraft
- Knowledge of the environment
- System requirements
- Computational resources

• How do we translate knowledge of a spacecraft into predicted knowledge of the 
state?
- Sensitive to what is known about the spacecraft
- How do we accurately account for systematic and random errors?
- How do we represent such uncertainties?
- How do we do it tractably?
- What are the impacts of truncating information?



Conjunction Assessment
PX
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Conjunction Assessment
• The commonly used metric for collision risk is the probability of collision - Pc
• This value is fundamentally flawed, but it is the best that we currently have.
• For example:  Using measurements with more noise yields a smaller probability 

of collision.
- The larger data noise produces a larger posterior density, which becomes larger after 

propagation.
- Hence, the probability that a spacecraft is in a given region of space is reduced.
- This reduces the probability of collision with another object!
- This is a fundamental flaw because it should give us less confidence in our knowledge 

of if there is a collision
• What improvements can be made to assess risk to spacecraft?



Conjunction Assessment

• Risk indicators must 
provide information on 
ignorance

• Risk indicators must be 
concrete and clear
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(a) Collision radius: mean 3.5m, std. dev. 0m
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(b) Collision radius: mean 3.5m, std. dev. 0.15m
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(c) Collision radius: mean 3.5m, std. dev. 1.5m
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(d) Collision radius: mean 3.5m, std. dev. 15m

Figure 5: Collision risk. The objects’ relative position prt is characterized by a Gaussian p.d.f. with mean
value µrt of 10m along the x coordinate, and a diagonal covariance matrix with same value on x/y/z
coordinates. The probabilistic interpretation characterizes the collision radius with a Gaussian p.d.f., the
possibilistic interpretation describes the collision radius with a Gaussian possibility function.

If, on the other hand, the collision radius is described by the uncertain variable Xc described with the
Gaussian possibility function N̄ (·;µc,σ2

c ), the space analyst cannot evaluate the probability pXc
(rc ≥ r)

in Eq. (18). They can however bound its value as follows:

1−max
rc<r

exp

[

−1

2

(

rc − µc

σc

)2
]

≤ pXc
(rc ≥ r) ≤ max

rc≥r
exp

[

−1

2

(

rc − µc

σc

)2
]

. (20)

When we substitute Eq. (20) in Eq. (18), we get a lower possibilistic bound of the form

P (0)
c (µc)−

∫ µc

0
p|X∗|(p∗ = r)e−0.5(r−µc)

2/σ2

cdr ≤ P (2)
c (µc,σc), (21)

and an upper possibilistic bound of the form

P (2)
c (µc,σc) ≤ P (0)

c (µc) +

∫ ∞

µc

p|X∗|(p∗ = r)e−0.5(r−µc)
2/σ2

c dr. (22)

The probability of collision (19) and the possibilistic bounds (21), (22) are illustrated on a numerical example
in Fig. 5.

We see in Fig. 5 that the collision risk is significantly different whether the uncertainty on the collision
radius is interpreted as purely aleatory in nature (black plot) or as both epistemic and aleatory (colored plots).
Unsurprisingly, the two interpretations are equivalent when there is no uncertainty in the collision radius
(top left plot). The differences between the two assessments grows with the standard deviation (std. dev.)
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Image: Delande et al., 2019



Conjunction Assessment
• We have two kinds of uncertainty:  

- Systematic (lack of knowledge)
- Random (irreducible)

• How do we accurately reflect systematic uncertainty in the conjunction 
assessment process?

• How do we provide operators with the data necessary to assess risk?
• Image description:

- The charts on the previous slide depict results from a new method of risk assessment 
that takes systematic uncertainty into consideration

- This produces upper and lower bounds on Pc
- With this approach, the separation between the bounds increases with reduced 

measurement quality, thereby reflecting systematic error



Information Fusion
• How do we transform measurements into knowledge?

Now, the only signals left in the image are from unknown space objects. A series of templates
are then generated with different streak lengths and orientations to detect any unknown objects in
the image. If the photometric SNR of the signal detected is greater than or equal to SNRthreshold,
the object location is passed to GM-PHD filter for tracking. If not, then each object location is
passed to a D-MB filter for tracking. After the tracking step is complete, the predictions for all the
objects are then fed back into the next dataset and this process is repeated. The overall approach
used in this paper is summarized in Figure 3.

4 Results

This section shows some of the preliminary results from the use of the above mentioned algo-
rithms. Figure 4 shows a portion of a raw image from the dataset. This contains the dark noise
and background noise along with the stars (clutter). The image is inverted for better visibility on
paper. Dark frame and background is subtracted for the same image and is shown in Figure 5 and
the space objects are now clearly visible.

Figure 4: A portion of the raw image from the dataset.

Figure 5: Image after dark frame subtraction, background subtraction, and star subtraction.

Figure 6 shows the cardinality, an estimate of the number of targets in each image, for both
the GM-PHD with MHT and D-MB filters. GM-PHD with MHT does well with tracking the high

Copyright © 2017 Advanced Maui Optical and Space Surveillance Technologies Conference (AMOS) – www.amostech.com

Figure 13: The blue boxes represent significant absorption features, and the dashed line the gener-
alized curve.

Figure 14: The dashed line has no inflection points within the domain examined.

Noise within both responses make determining spectral features di�cult. It is worth noting that the
data revealed here is smoothed with a moving average. If counts are bright enough, this results in
much fewer oscillations due to noise. This can be seen in Figure 15. Evident in this plot, there is
very little absorption, but a small feature exists at around 530 nm.

14



Information Fusion
• How do we go from measurements to knowledge of a space 

object?
- In general, data association is non-trivial
- Optical images provide limited information on location and 

brightness
- Brightness provides some data on angular rates, but is ambiguous
- Spectroscopy can provide information on materials, but is 

sensitive to observing conditions

• We need new measurement types and improved algorithms for 
information extraction that help identify spacecraft!



Tracking Dim Objects

Movie: Courtesy of Shahzad Virani and Marcus Holzinger, Georgia Tech

• How do we track small 
(i.e., dim) objects with 
low signal-to-noise?

• How do we handle the 
joint detection and 
tracking problem?



Influence of New Space on SSA

Image: NASA

Image: OneWeb

Figure 11: SOs with in-track/cross-track covariances above a certain threshold for the four-sensor case

6. CONCLUSIONS

We implemented an integrated tasking and tracking algorithm that allocates tasks to a network of six ground-
based sensors and processes the resulting observations to track a simulated constellation of 4,425 satellites.
Our tasking scheme ranks possible tasks based on information gained, and uses the Munkres algorithm to
optimally allocate tasks to sensors. The LMB Filter used for tracking is capable of resolving the object-association
ambiguities that arise due to observation of multiple targets and sensor errors. Our results showed that the full
system can be used to accurately track the entire simulated constellation with this sensor network. Furthermore,
the estimates are precise enough to be useful for object acquisition and possibly other applications. A simulation
with a decreased number of sensors suggests that a similar level of estimate quality can be obtained with fewer
available sensors, but may require some modifications for robustness.
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Image: Ravago et al., 2018

captures a small fraction of the actual events. The lower Pc thresholds track the rate of actual colli-
sions more closely, especially over the first two days. Over time, they diverge from the true collision
number as the initial uncertainties grow and the Pc calculation yields lower values. We believe that
the pessimistic uncertainties that came out of the filter are driving the general underestimation of
collision probabilities. Further analysis will consider how a more consistent filter implementation
affects CA.

Figure 7. Number of collider-constellation alarms

12 Sensor Case

Plots of the numbers alarms raised for each category of collision using the twelve sensor catalog
estimate are shown in figures 8 and 9. As stated previously, different covariance values can affect
the Pc calculation. We can see that effect here in the difference in the number of alarms raised when
using the twelve-sensor catalog compared to the six-sensor catalog.

Figure 8. Number of alarms involving constellation objects and Molniyas

The twelve-sensor catalog has similar trends in attempting to identify collider-constellation col-
lisions. Since we believe these problems to be a result of our uncertainty propagation scheme, and

Distribution A 15

Image: Ravago and Jones, 2018



Influence of New Space
• Many advancements will be driven by the New Space industry

- Getting into space is increasingly inexpensive
- Vehicle launches are getting cheaper
- Kilo-constellations (1,000s of spacecraft)
- Proliferation of cube-/small-sats

• This yields a discrete jump in the number of trackable space objects
- How do we adjust to such changes in the near future?
- What are the operational impacts?
- What are the recommended practices for new space operators?
- What level of cooperation is require to be successful?

• What are the impacts to existing practices and methods?
- Example:  Common Pc = 10-4 no longer a feasible risk threshold!



Resource Utilization
• How do we use sensor resources for SSA?

0018-9251 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TAES.2018.2830578, IEEE
Transactions on Aerospace and Electronic Systems
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discussed spooky effect. All cases demonstrate the ability of
the algorithm to locate and schedule follow-on measurements
for objects with no a priori information, with the sensor
spending the majority of its time in search mode.

Figure 5 gives a more detailed review of the ST1C test
case. On the left, Figure 5(a) shows the cumulative number
of measurements, missed detections, and false alarms during
the simulation, as well as the sum of new target probabilities
at each time. The sum of pnew,i values demonstrates the
computed probability functions as desired, with values near
1 at the times corresponding to new targets and false alarms,
and smaller values at times when measurements are collected
near existing targets. On the right, Figure 5(b) provides insight
on the tasking mode, including the expected information gain
RC , and the identity of the search grid point, object, or false
alarm (denoted FA) scheduled for follow-on observation. The
estimated number of objects is also included for reference.

(a) Measurements

(b) Tasking Mode

Fig. 5. Test ST1C Results

While case ST1C is generally successful, increasing the
number of false alarms causes issues in case ST1D. As shown
in Figure 6, the filter overestimates the number of objects
present due to the large number of clutter returns in the
measurement set. For each false alarm, a set of CAR GMM
components with a collective weight close to one are added
to the filter, and while the follow-on measurements prevent
the estimated cardinality from growing too large, the filter is
unable to recover the correct estimated target number as it
did previously. In order to deal with increasingly challenging

(a) Measurements

(b) Tasking Mode

Fig. 6. Test ST1D Results

measurement conditions, subsequent test cases consider the
use of a PHD filter to pre-screen measurements and refine
CAR estimates prior to confirming targets for inclusion in the
CPHD filter, as described in Section III-C.

C. Test Case 2: Augmented CPHD with Missed Detections

The second test case examines the capabilities of the
augmented CPHD filter, considering the effect of missed
detections on the ability of the filter to estimate the multitarget
state and cardinality. The same two objects are modeled as
before, but over a time period of 36 hours to evaluate whether
the algorithm can maintain custody of targets identified the
first night following a 12-hour gap in sensor availability.
Several values are considered for the probability of detection
while no false alarms are simulated, again using � = 0.01 for
the Poisson clutter model in both the PHD and CPHD filter
updates. The information gain cutoff C = 5 and clustering
threshold Uc = 36 are used for all cases. Clustering is applied
in the confirmed CPHD filter only.

Figures 7-8 provide the results of the missed detection test
case. The OSPA position and velocity errors are given for the
confirmed track CPHD filter, and position errors for all cases
converge to the km level by the final time. No unexpected
peaks or jumps occur in the OSPA errors; the steady increase
for most of the cases between 12 and 24 hours results from

assignments, the latter of which has the capacity to anticipate future
outages for objects and schedule them while they are still available.
The object missed detection is not something that multistep
assignment approaches are better suited to handle; it is simply a
circumstance of the test. It should be noted that if an additional sensor
were used to ensure full global coverage, or if the duration of the test
were extended, the single-stepmethodwould be expected to detect all
objects.
Similarly, the 60 and 180 min information gain assignments miss

several objects. Both schemes fail to schedule the same two objects as

the single-step method. This results from the expected information
gain being outside the highest range of values for the assignment
window length; i.e., if an object is available for less than 60 min and
the expected information gain is not in the 60 highest values, it will
not be scheduled in the 60 min assignment. The other objects are
scheduled but missed detections; they are all supersynchronous or
subsynchronous and drift into the region of no coverage before they
can be rescheduled. The fact that more missed objects occur for the
multistep cases is likely due to the length of the assignment window,
which prevents quick rescheduling. Whereas the single-step method
can reschedule a missed object immediately, the multistep methods
must wait until the entire assignment window is complete before
computing a new set of tasks. There is no guarantee an object will be
rescheduled before leaving the field of regard for any scheme, and as
before, with full global coverage or a longer simulation, all infor-
mation gain schemes would be expected to detect all objects. For
these reasons, the effects ofmissed objects should not beweighed too
heavily against a scheme’s performance, and a final analysis is
considered in which the position errors have been averaged over only
the objects detected for each case.
Figure 15 provides the average position errors for each scheme

using only the objects that are detected in the course of the simulation.
While the box scan is still the worst case, the average fast box scan

a) Average position errors b) Converged average position errors
Fig. 12 Simulation position error results (Max denotes maximal, Min denotes minute, and IG denotes information gain).

Table 6 Results summary

Tasking scheme
Number of objects

missed
Number of
observations

Box scan 185 1,441
Fast box scan 14 8,537
Maximal assign even 1 13,512
Single-step IG 3 14,786
60 min IG 6 18,689
180 min IG 7 18,842
Maximal assign IG 0 21,032

a) Number of measurements b) Detected objects
Fig. 13 Number of measurements and objects detected (Max denotes maximal, Min denotes minute, and IG denotes information gain).
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• What is the utility of data 
available?

• Example:  Do we need 1M 
observations of the 
International Space 
Station?



Resource Utilization
• Data is becoming increasingly common

- Multiple universities produce SSA data
- Multiple companies produce volumes of SSA data

• With so much data, what is its utility?
- How much data is sufficient?
- How much should data cost?

• What modes of operation are appropriate?
- Custody maintenance versus precise orbit determination
- Searching versus tracking of space objects



ASTRIAGraph: Knowledge Graph for Space Domain Awareness
ASTRIAGraph

http://astria.tacc.utexas.edu/AstriaGraph


A Tried and 
Trusted

Research 
Institution

• Extensive 
computational 
modeling

• Existing HPC 
visualization

• Haptic Interfaces
• Networked together

• Robust, extensible, 
modular, secure 
cyberinfrastructure

• Dynamic interaction 
with information sources

• Delivering actionable 
data products

Delivering Future 
Capability

• Advanced degrees
• Certifications
• Apprenticeships
• Visiting scholars 

program

• Interdisciplinary 
research

• World-class spaceflight 
expertise

• Astrodynamics
• Algorithm design and 

V&V

Unrivaled environment for 
workforce development

UT’s has, and creates, SSA 
expertise and infrastructure

http://sites.utexas.edu/bajones http://sites.utexas.edu/moriba http://sites.utexas.edu/russell




