

# **SSA Capabilities and Policies** Academia/Scientific

Brandon A. Jones, Ph.D. Assistant Professor Thursday January 24, 2019



# **Example Roles in SSA**

- **Operators** Maintain and advance the state of practice
- **Industry** Transition state of the art into practice
- Academia Advance the state of the art
  - Academics must *actively promote* advancements to operators and industry to remain relevant!
  - Academia is better suited to the exchange of new ideas and impartial comparison between algorithms and methods



Advance understanding and state of the art



Image: Tuggle and Zanetti, 2018



- SSA estimation problems are fundamentally nonlinear.
- Academia has led the advancement of Bayesian inference for nonlinear systems
- Description on figure from previous slide:
  - Left Figure A prior distribution for a 2-D estimated state vector
  - Middle Figure A single measurement of distance from the origin (Gaussian noise/error)
  - Right Figure Posterior distribution given prior and measurement
- In this scenario, classical methods such as the Kalman filter, extended Kalman filter, and the unscented Kalman filter fail.



Consider high-risk, high-reward ideas for SSA





- Accuracy of propagators in SSA classically limited by computation resources
- Computational expense of gravity model limits accuracy for propagation of low-Earth objects.
- Jacobian also relies on gravity model
- Research in leveraging modern computers makes gravity model runtimes constant with an increase in memory requirements
- Gravity model runtimes can be greatly reduced.



• Question assumptions that are considered fact

TLEs classically considered incompatible with special perturbation methods.

Advancements in "hard" and "soft" information fusion demonstrate otherwise





- Combining Two-Line Elements (TLEs) and special perturbations methods of orbit determination/propagation have traditionally been infeasible
- Combining methods of "hard measurements" (quantifiable measurements with known uncertainty) with "soft measurements" (not quantifiable or measurements with unknown uncertainty) enable improved estimation performance
- New methods of hard/soft information fusion allow for maximizing information gained from data
- Image description:
  - Blue vertical bars are times where a new TLE is available
  - Vertical orange bars are time with a new range measurement
  - Including the TLE as soft information improves accuracy until a sufficient number of hard measurements are available.



• Train the future researchers and operators in SSA









# **SSA – A Multi-disciplinary Problem**

- Applied Mathematics
- Astronautics
- Astronomy
- Computer Science
- Engineering Mechanics
- Information Fusion

- Material Science
- Psychology
- Policy
- Remote Sensing
- Space Weather
- Others...



# **Space Object Interaction with Environment**





# **Space Environment**

To maintain SSA, must understand the spacecraft's interaction with its environment ۲

You must measure it to know it; you must predict it to understand it. - Moriba Jah, UT-Austin

- Conservative forces •
  - Gravity (Earth and other bodies)
  - Aspherical gravity and its temporal variations \_
  - Relativistic forces \_
- Non-Conservative forces
  - Solar radiation pressure \_
  - Earth radiation pressure \_
  - Thermal radiation \_
  - Maneuvers
  - Electrostatic charging \_
  - Outgassing



# **Knowledge of Orbit State**

• Orbit state and uncertainty propagation





# **Knowledge of Orbit State**

- Knowledge of orbit state is a function of many elements
  - Knowledge of the spacecraft
  - Knowledge of the environment
  - System requirements
  - Computational resources
- How do we translate knowledge of a spacecraft into predicted knowledge of the state?
  - Sensitive to what is known about the spacecraft
  - How do we accurately account for systematic and random errors?
  - How do we represent such uncertainties?
  - How do we do it tractably?
  - What are the impacts of truncating information?



The University of Texas at Austin Aerospace Engineering and Engineering Mechanics Cockrell School of Engineering

#### **Conjunction Assessment**





### **Conjunction Assessment**

- The commonly used metric for collision risk is the probability of collision  $P_c$
- This value is fundamentally flawed, but it is the best that we currently have.
- For example: Using measurements with more noise yields a smaller probability of collision.
  - The larger data noise produces a larger posterior density, which becomes larger after propagation.
  - Hence, the probability that a spacecraft is in a given region of space is reduced.
  - This reduces the probability of collision with another object!
  - This is a fundamental flaw because it should give us less confidence in our knowledge of if there is a collision
- What improvements can be made to assess risk to spacecraft?



The University of Texas at Austin Aerospace Engineering and Engineering Mechanics Cockrell School of Engineering

# **Conjunction Assessment**

- Risk indicators must provide information on ignorance
- Risk indicators must be concrete and clear



#### Image: Delande et al., 2019



# **Conjunction Assessment**

- We have two kinds of uncertainty:
  - Systematic (lack of knowledge)
  - Random (irreducible)
- How do we accurately reflect systematic uncertainty in the conjunction assessment process?
- How do we provide operators with the data necessary to assess risk?
- Image description:
  - The charts on the previous slide depict results from a new method of risk assessment that takes systematic uncertainty into consideration
  - This produces upper and lower bounds on  $P_c$
  - With this approach, the separation between the bounds increases with reduced measurement quality, thereby reflecting systematic error



# **Information Fusion**

• How do we transform measurements into knowledge?







# **Information Fusion**

- How do we go from measurements to knowledge of a space object?
  - In general, data association is non-trivial
  - Optical images provide limited information on location and brightness
  - Brightness provides some data on angular rates, but is ambiguous
  - Spectroscopy can provide information on materials, but is sensitive to observing conditions
- We need new measurement types and improved algorithms for information extraction that help identify spacecraft!



The University of Texas at Austin Aerospace Engineering and Engineering Mechanics Cockrell School of Engineering

# **Tracking Dim Objects**



- How do we track small (i.e., dim) objects with low signal-to-noise?
- How do we handle the joint detection and tracking problem?

Movie: Courtesy of Shahzad Virani and Marcus Holzinger, Georgia Tech



The University of Texas at Austin Aerospace Engineering and Engineering Mechanics

### Influence of New Space on SSA







# Influence of New Space

- Many advancements will be driven by the New Space industry
  - Getting into space is increasingly inexpensive
  - Vehicle launches are getting cheaper
  - Kilo-constellations (1,000s of spacecraft)
  - Proliferation of cube-/small-sats
- This yields a discrete jump in the number of trackable space objects
  - How do we adjust to such changes in the near future?
  - What are the operational impacts?
  - What are the recommended practices for new space operators?
  - What level of cooperation is require to be successful?
- What are the impacts to existing practices and methods?
  - Example: Common  $P_c = 10^{-4}$  no longer a feasible risk threshold!



#### **Resource Utilization**

• How do we use sensor resources for SSA?



- What is the utility of data available?
- Example: Do we need 1M observations of the International Space Station?

Image: Gehly et al., 2018a



## **Resource Utilization**

- Data is becoming increasingly common
  - Multiple universities produce SSA data
  - Multiple companies produce volumes of SSA data
- With so much data, what is its *utility*?
  - How much data is sufficient?
  - How much should data cost?
- What modes of operation are appropriate?
  - Custody maintenance versus precise orbit determination
  - Searching versus tracking of space objects



#### **ASTRIAGraph: Knowledge Graph for Space Domain Awareness ASTRIAGraph**





The University of Texas at Austin Aerospace Engineering and Engineering Mechanics



#### http://sites.utexas.edu/bajones

#### http://sites.utexas.edu/moriba

#### http://sites.utexas.edu/russell

