# A Handbook for Post-Mission Disposal of Micro Satellites and

Smaller

Dr. David B. Spencer The Pennsylvania State University

#### IAA Study Group SG4.23

- Actually, the report name is being tweaked
  - "A Handbook for Post-Mission Disposal of sub-100kg Satellites"
- International Academy of Astronautics Study Group
  - Commission 4 Space Systems Operations and Utilization
  - Study Team Chairs: Darren McKnight, Toshiya Hanada, Alex de Silva Curie, Peter Martinez, Rei Kawashima (Secretary)
  - > 35 Study Team Members
  - Reviewers always welcome!

#### **Report History**

- Kick-off September 2017
- Planning Meeting March 2018
- First draft October 2018
- Currently under revision new version expected any time
- Next draft (final?) by January 2019

#### Overall Goal

- Provide framework for a practical implementation to assure compliance with Space Debris Mitigation guidelines for micro and smaller satellites
  - Provide easy to use design tradeoff information to small satellite community
  - Assumes reader has no background in orbital debris analysis

### Study of Scope and Objectives

- Create framework (from trade study organization and results of trade study) for debris mitigation compliance for university space users leveraging post-mission disposal (PMD) devices.
  - Define all relevant terms
  - Do not recommend specific products
  - Useful for emerging space powers and possibly regulators

#### Plan – Logical and Compelling



6

#### An International Effort

| Chapter                          | Authors                                                                                                                                                                      | - And |
|----------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| 1. Overview                      | Darren McKnight (USA)                                                                                                                                                        | - Com |
| 2. Mitigation<br>Guidelines      | Christophe Bonnal (France)                                                                                                                                                   |       |
| 3. Determine Orbital<br>Lifetime | Darren McKnight (USA) and<br>Alim Rustem Aslan (Turkey)                                                                                                                      |       |
| 4. Reentry Survival              | David B. Spencer (USA)                                                                                                                                                       |       |
| 5. Propulsion and<br>Drag Force  | Norman Fitz-Coy (USA), Aaron Rogers (USA), Alfred Ng (Canada), Fabio<br>Santoni (Italy), and Lourens Visagie (South Africa)                                                  |       |
| 6. Non-drag Force                | Sergey Trofimov (Russia) and Satomi Kawamoto (JAXA, Japan)                                                                                                                   |       |
| 7. Trade Study                   | Juan Carlos Dolado Perez (CNES, France) and Marlon Sorge (USA)                                                                                                               |       |
| Reviewers                        | Peter Martinez (South Africa), Barnaby Osborne (Australia)<br>Livio Gratton (Argentina), Klaus Schilling (Germany), Roberto Opromolla (Italy),<br>Christophe Bonnal (France) |       |



#### Debris Mitigation Guidelines

- In general, all the space debris mitigation rules (such as ISO 24113) apply to any spacecraft, whatever its size.
- Debris mitigation guidelines for this handbook basically present four major requirements:

1. Passivate energetic sources (e.g., batteries and capacitors) and vent excess propellant.

2. Eliminate creation of all debris greater than 1mm; especially avoid explosions and collisions.

3. Ensure that all objects left on-orbit are reentered or moved to an acceptable graveyard orbit within 25 years after their operational life with a probability of 90%.

4. Reentry casualty risk to humans must be less than 10<sup>-4</sup>.

• This handbook primarily focuses on the last two requirements.

#### How Small is Small?

| SMALLSATS       | 500kg and smaller                                            |
|-----------------|--------------------------------------------------------------|
|                 |                                                              |
| MICROSATS       | 100kg and smaller                                            |
|                 |                                                              |
| NANOSATS        | 10kg and smaller                                             |
| 1U cubesat: 1kg | $\rightarrow$ 3U cubesat: 5kg $\rightarrow$ 6U cubesat: 10kg |
| PICOSATS        | 1kg and smaller                                              |
|                 |                                                              |

Norms and Standards Through National Laws to International Principles





#### LEO SPACECRAFT AREA TO MASS RATIO

#### Calculating Orbital Lifetimes: An Art and Science

#### **Empirical – Simple, Intuitive** 800 600 500 400 300 200 80 100 80 m<sup>2</sup> kg<sup>-1)</sup> 60 40 30 (year I 20 Reduced Lifetime LA / m 10 25-yr Orbital Lifetime for AMR=0.01m<sup>2</sup>/kg 0.04 0.06 0.08 Eccentricity e 400 600 800 1000 1400 1600 1800 1200 Perigee height (km)

#### Analytical – Complete, Accurate

- STELA
  - ✓ Semi-analytic Tool for End of Life
    Analysis
  - ✓ Designed by CNES to support the French Space Operations Act
  - $\checkmark$  STELA is available for download

https://logiciels.cnes.fr/en/content/stela

 Provides more flexibility in dealing with varying spacecraft orientations, solar activity levels, and altitudes/orbits

✓ Meet 25yr threshold in LEO: circular below ~625km or perigee below ~400km

✓ Effect of increased area increasing drag is evident...

#### **Reentry Survival**

Four primary characteristics that drive reentry survival:
 ✓ Material: typically aluminum and circuit boards
 ✓ Mass: under 100kg (for microsats and smaller)
 ✓ Construction: no hardened or high density devices
 ✓ Reentry Trajectory: due to contraction from atmospheric drag





Microsats and smaller satellites will pose little air or ground impact risks - Beware of densely-built components such as control moment gyros and batteries

#### Tiangong-1 Ground Track and Reentry Risk Areas



### Tiangong-1 – Predicting the last orbits

- Predictions:
  - Late February, 2018, prediction early April
  - <u>+</u> 1 week
- Rule of thumb 10%-20% of the "time to go" prediction
- Reentered off the coast of South America on 1 April 2018



#### NASA's Upper Atmosphere Research Satellite (UARS)

- 6,000 kg
- Reentered in 2006



#### Example of NASA's ORSAT Software Output

- Analysis used to predict UARS spacecraft reentry breakup
- Most lightweight and odd-shaped pieces vaporized in the atmosphere between 40 and 80 km altitude
- Heavy parts would survive reentry
- No reports of pieces from this reentry



## Propulsion and Drag Augmentation Methods

- Propulsion systems,
- Drag augmentation devices,
- Electrodynamic tethers, and
- Solar sails.

#### Altitude range to deorbit as a function of areato-mass ratio



■ 5 Years ■ 15 Years ■ 25 Years

#### Reduce Lifetime by Propulsion

✓ Strategy varies across LEO: require 10s to 100s m/s of delta velocity



## Reduce Lifetime by Non-Drag Forces

• Solar Radiation Pressure







✓ **Solar – simple, slow**; deal with stability, durability, & collision cross-section issues

✓ EDT - flexible, fast; deal with stability, durability, & collision cross-section issues<sup>21</sup>

#### Trade Study – What is Best for you?

• What can you control and what will provide greatest effects?



#### Summary

- This manual complements other standards...
  ✓ ISO 24113, Space Systems Debris Mitigation
  ✓ ISO/TS 20991, Space Systems Requirements for Small Spacecraft
- Encourage and enable microsat (and smaller) operators to be responsible space users
- Choice for assuring adherence of a specific microsat or smaller to debris mitigation guidelines depends on...
  - Operational altitude, functional capabilities, and resources available
- Completion planned NLT than 1 January 2019

#### We'd like your feedback

- Upon release of the next draft, we are ready for a new review
- Due out on November 15
- E-mail me (<u>dbs9@psu.edu</u>) or Dr. Darren McKnight (<u>dmcknight@integrity-apps.com</u>) for a copy of the next draft
- Reviews due back ~January 1
- Goal is to submit for IAA review in March 2019

## Thank you...