

Geospace Research in Japan by the Geospace Explorer "Arase"

Arase Project Team

Project Manager: Iku Shinohara (JAXA)

Project Scientist: Yoshizumi Miyoshi (Nagoya Univ.)

Today's speaker: Ayako Matsuoka

(JAXA, PI of MGF)

Geospace: Sun-Earth Connection

Magnetosphere

Typical energy of electrons in the space

- In the solar wind : about 100 electron volt
- In the earth ionosphere (auroral altitude): about 1000 K

< 1 electron volt

Radiation belt

©NASA

- Area where the electron energy is highest in the geospace.
- Energy of electrons :
 Several hundreds kiro- ~ several tens mega- electron volt
 (several hundreds billion K)
- Electron speed is close to the light speed.
- Electron flux shows dynamic temporal variation.

Why so energetic? Why sometimes decline?

The interaction between electrons and plasma waves

in the radiation belt is considered to be one of the key processes for electron energization and loss.

- Electrons gain energy from waves
- Electrons are scattered by waves and precipitated to the atmosphere

Arase (ERG) satellite

- ERG project was planned to study the wave-particle interaction and electron energization/loss in the radiation belt.
- ERG satellite was successfully launched on Dec. 20, 2016, and given the Japanese nickname "Arase"
- Regular science observation started on March 24 2017.

Launch at Uchinoura Space Center (USC) by Epsilon launcher

orbit

Apogee: ~ 32,000 km Perigee: ~ 400 km Inclination: 31 deg.

- ◆Six sensors measure the plasma (electrons of 19 eV 20 MeV and ions of 10 eV/q 180 keV/q)
- Two booms and four wire antennae measure plasma waves (magnetic and electric fields)

Radiation Belt Observations for One Year

Arase/XEP

September 2017 storm

 loss of the outer-belt electrons during the main phase of the geomagnetic storm.

Real Time Space Weather Data

Arase is providing real-time data of radiation belt monitoring for nowcast as well as forecast of space weather.

■JAXA/SEES

ARASE(ERG) 準リアルタイムグラフ表示機能 ARASE(ERG) Space Weather Data

■ Space Radiation Model at NICT

Arase Space Weather data is used as input

http://seg-web.nict.go.jp/arase-spaceweather/forecast.html

Collaborations

Summary

- "Arase" is observing inner magnetosphere and radiation belts, where acceleration and loss of energetic electrons occur through waveparticle interactions.
- Joint-observations with NASA Van Allen Probes have been executed at proper timings of good conjunctions. They help us to understand the spatial structure and temporal variations of the radiation belts.
- Joint operations with the world-wide ground-network observations has been carried out and will be planned. During these periods, we could successfully observed various types of magnetic storms.
- Soon we will start to open science data obtained by "Arase" in the early phase to the public.
- We hope the Arase's achievements will contribute to the space weather forecast.