Yuval Ne'eman Workshop for Science, Technology and Security, Tel Aviv University Leonard Davis Institute for International Relations, The Hebrew University, Jerusalem

Space Weapons and the Challenges to Space Security

Dr. Deganit Paikowsky

28 April, 2016

Overview

- Global space activity and the need for space security and sustainability
- Threats and challenges to the security of space systems:
 - Unintentional hazards
 - Intentional hazards and space weapons
 - A typology of intentional hazards
- Steps ahead

Global Space Activity

- 2014 Space Market 330B\$
- About 1200 active and operating satellites
- 10 space launching countries: Russia, USA, European Space Agency, China, Japan, India, Israel, Iran, North-Korea, South-Korea
- About 70 countries own space assets
 - Greater interest in space activity in South America,
 the Middle East, and Africa
- 80-90 launches a year
- 158 satellites launched into space in 2015.

What is Space Security and Sustainability?

The ability of all humanity to continue to use outer space for peaceful purposes and socioeconomic benefit over the long term.

Challenges of Space Security and Sustainability

- A. Threats from the space environment
- B. Threats originating from human space activity:
 - * Unintentional hazards
 - * Intentional hazards

Intentional Hazards and Space Weapons

A Typology of Intentional Hazards and Space Weapons

- 1. Soft-kill / Hard kill
- 2. Denial (Temporary and reversible damage)/
 Destruction (Permanent Damage)
- 3. Based in space / Based on the ground.

	Temporary/Denial	Permanent/ Destruction
In space	 Direct Energy (DE) Cyber 	 High DE Cyber ASAT- kinetic intercept and close approach Debris Removal
On the ground	 DE Cyber Radiofrequency interference 	 High DE Physical attack of ground stations ASAT Missiles - kinetic intercept and close approach

Current Status and Use of Space Weapons

- Spacefaring nations reinforcing their defensive capabilities.
- Growth in the number of Jamming events.
- Cyber An Achilles Heel.
- Direct Energy and Lasers.
- ASATs development and experiments.

Potential Tools

Providing Better Protection

- ✓ Greater awareness to the growing threat of space weapons.
- ✓ Adopting a holistic perspective assuring the sustainability of space systems – instead of the security of a particular space object.
- Better dialogue among military, civil, and commercial actors.
- ✓ Standardization and regulation at the international and national levels.
- ✓ International cooperation.

Literature

- The Physics of Space Security (2005)
- Space Security Index 2015 (2015)
- Space 2015: A Year in Review (2016)

Yuval Ne'eman Workshop for Science, Technology and Security, Tel Aviv University Leonard Davis Institute for International Relations, The Hebrew University, Jerusalem

Space Weapons and the Challenges to Space Security

Dr. Deganit Paikowsky

28 April, 2016